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The paper presents a description of the two-dimensional flash method for mea-
suring the thermal diffusivity of deposited thin solid films and coatings, includ-
ing the possibility of determination of the thermal contact resistance and the
thermal anisotropy of the film or coating. Giving an analytical solution of
the transient temperature as the consequence of transient two-dimensional heat
conduction through the sample, the paper describes the estimation possibilities
for the thermal diffusivity and thermal contact resistance, as well as for other
typically unknown parameters of the model. Particular attention was given to
the influence of ‘‘known’’ parameters on the estimation possibilities of unknown
parameters. With such a study, essential information for the modeling of the
experiment is provided. The experimental setups and demonstration of the
proposed data reduction procedure are presented at the end of the paper.
Having different estimation possibilities for measuring different locations of the
sample, the results suggest using the data of several transient temperatures for
more reliable and accurate simultaneous estimation of the thermal diffusivity
and thermal contact resistance of deposited thin films and coatings.

KEY WORDS: coatings; laser flash method; layered materials; thermal aniso-
tropy; thermal contact resistance; thermal diffusivity; thin films; two-dimen-
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1. INTRODUCTION

The laser flash method based on analyzing the rear-side transient tempera-
ture response, originally proposed for thermal diffusivity measurements of
solid homogeneous materials [1], has been, since the mid-1960s of the
past century, the most powerful tool in thermal transport property studies
over the widest temperature range. The method has also been the subject of
extensive analyses. Research was directed toward both improvement of the
accuracy and reliability of its results, and also extension of its applicability
regarding the types of examined materials. With the evergrowing demand
of industrial applications, the laser flash method has been extended to
thermal diffusivity measurements of thin films, coatings, anisotropic, and
layered materials, metals in the liquid state, etc.

As a solution for anisotropic single materials, Donaldson and Taylor
[2] proposed a radial heat flow or two-dimensional flash method variant,
which was later used and further developed by Chu et al. [3] and Amazouz
et al. [4]. Lachi and Degiovanni [5] applied a parameter estimation anal-
ysis in the method, introducing an optimization regarding the sensitivities
of measured values. Using the same principle, Shibata et al. [6] proposed a
technique for thermal diffusivity measurements of thin films in the directions
parallel and perpendicular to the rectangular sample surface. They used a
line-shaped laser beam for one-dimensional (1D) heat flow simulation in the
sample plane, described by a simplified analytical equation. Recently, Sheikh
et al. [7] suggested circular disk specimens and the solution of a corre-
sponding cylindrical two-dimensional heat conduction equation.

Considering layered materials, Larson and Koyama [8] studied theo-
retically transient mono-dimensional heat conduction in two-layered samples
resulting from step-function heating, but neglecting thermal contact resis-
tance between the layers. Gilchrist and Price [9] developed an apparatus
for measuring the thermal diffusivity of thin films and double-layer
materials. Bulmer and Taylor [10] revised the mathematical procedure of
Larson and Koyama for pulse heating appropriate to the laser flash
method. Balageas et al. [11] considered the influence of finite contact
resistance, giving also the analytical solution for 1D heat flux. Many
authors applied later the principle of the flash method with mono-dimen-
sional heat conduction to measuring the thermal diffusivity of layered
materials.

On the other hand, several papers dealt with transient two-dimen-
sional heat conduction in layered and composite materials, but not neces-
sarily related to the laser flash method. Salt [12, 13] investigated an ana-
lytical solution in a two-dimensional composite slab when the initial flux
had a step change. He analyzed in detail the temperature modes, giving
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their mathematical and physical interpretation. Mikhailov and Vulchanov
[14] proposed a general procedure for resolving Sturm–Liouville problems,
proper for the multilayered two-dimensional (2D) heat conduction case.
Somewhat later, Mikhailov and Özişik [15] confirmed the procedure
offered by Salt for a three-dimensional version of the problem. Yan et al.
[16] developed different solutions of 2D conduction in layered media for
various boundary conditions. Aviles-Ramos et al. [17] offered the exact
transient solution of two-dimensional conduction in composite orthotropic
media for inverse evaluation purposes. Abdul Azeez and Vakakis [18]
proposed a partially analytical solution of the transient heat diffusion
equation in multilayered semi-infinite media using a double integral trans-
formation, which was similarly done by Kozlov and Mandrik [19].

As the laser flash method holds a most important place in measuring
thermal diffusivity, this paper tries to extend possible applications of the
method to the study of 2D heat flow in layered media, including the
finite thermal contact resistance and anisotropy of thin films or coating
materials. The paper presents an explicit analytical solution of the problem,
an investigation of parameter estimation possibilities using an estimation
procedure, as well as a description of a measurement technique for simul-
taneous determination of the thermal diffusivity and thermal contact
resistance.

2. THEORETICAL MODEL

Let a two-layer sample be in the cylindrical form as shown in Fig. 1a.
The first layer (substrate) is a homogeneous and isotropic material, and it is
exposed to a short laser pulse. The other represents a thin film or coating,
deposited on the substrate. Each material is characterized by thermophysi-
cal properties such as thermal diffusivity a, heat capacity c, and density r.
The contact between the layers, which is non-ideal, is described by a finite
thermal contact resistance, Rc. Assuming the anisotropy of a thin film or
coating, one identifies thermal diffusivity a2|| for the parallel and a2 + for
the perpendicular direction to the plane of that layer.

The corresponding cylindrical coordinate system is shown in Fig. 1b.
The contact point between the layers and at the center of the sample is
designated zero in axial and radial directions. The thickness of the sub-
strate is denoted with a, that of the thin film or coating with b, and that
for the sample radius with d. Axial heat transfer coefficients h1 and h2,
describing boundary conditions between sample and environment, are
finite, while radial coefficients hr1 and hr2 are assumed to be zero. The
latter condition is essential for resolving the problem by the separation of
variables technique [16].
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Fig. 1. (a) Two-layer composite sample; (b) Corresponding coordinate system.

At time t=0, the laser pulse of energy Q and duration y, begins to
impact the front sample side (substrate) on the central circular surface of
radius df, as shown in Fig. 1b. Assuming that the pulse energy is absorbed
in a very thin volume of thickness e (e ° a) and radius df, the heat diffuses
axially and radially by conduction from the front to the rear sample side,
where the transient temperature is measured.

If one assumes that the thermophysical properties are constant within
a small variation of sample temperature, the initial energy is absorbed uni-
formly in the sample, and, for example, the initial pulse is infinitely short,
i.e., in the form of a Dirac pulse (y=0), the corresponding partial differ-
ential equations are
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where l is the corresponding thermal conductivity (l=rca).
This problem can be solved analytically by separating the space and

time variables. The solution of temperature at the surface of a thin film,
assuming the instantaneous laser pulse (y=0), can be expressed in the
following form [20]:
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s1n, i=k1cn, i cos(cn, ia)+h1 sin(cn, ia),
(10)

s2n, i=k1cn, i sin(cn, ia) − h1 cos(cn, ia)

s3n, i=k2 + gn, i cos(gn, ib)+h2 sin(gn, ib),
(11)

s4n, i=−k2 + gn, i sin(gn, ib)+h2 cos(gn, ib)

Coefficients ni and bn, i (n, i=1, 2,...,+.) represent positive roots of two
transcendental equations:

niJ1(nir)=0 (12)

and

k2 + gn, is1n, is4n, i − k1cn, is2n, is3n, i − k1k2 + Rccn, ign, is2n, is4n, i=0 (13)

For each value of ni one has to solve Eq. (13) and find the roots bn, i.
If the initial pulse is of finite duration y, the solution can be obtained

using the theorem of superposition proposed by Watt [21], according to
which the sample temperature is a function of the pulse evolution. If the
pulse variation is described by G(t, y), the transient temperature of the rear
sample side becomes for t > y

T(r, t, y > 0)=5F
y

0
G(tŒ, y) dtŒ6

−1

F
y

0
G(tŒ, y) T(r, t, y=0) dtŒ (14)

where T(r, t, y=0) is the temperature from Eq. (7). For t [ y, the same
expression is valid, but with parameter t instead of y for the upper limits of
both integrals. In practice, when the characteristic duration of the temper-
ature response is much longer than y, the temperature is well described only
by Eq. (7).

The transient temperature is mathematically expressed by Eq. (7) or
Eq. (14) for every moment t and coordinate r. Nevertheless, in reality,
when an infrared detector is used for temperature measurement, the tem-
perature response represents an average temperature of a region ‘‘seen’’
by the IR detector. One should, therefore, extend the expression for the
transient temperature given by Eq. (7) or Eq. (14) to that which would
comprise a supposed radius of the detected area, rs.

The influence of the finite detected region, where the region is concen-
tric with the sample surface, has been studied by Yamane et al. [22]. In
this case, however, the detected region is removed from the sample center
and an auxiliary reference system must be considered. It is presented on
Fig. 2a, where r0 is the distance between the center of the sample surface
and the center of the detected region, and rœ is the coordinate of a single
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Fig. 2. (a) Detected surface and corresponding coordinate system; (b) Considered tempera-
ture points for parameter estimation.

temperature point within the detected region with respect to the main refer-
ence system. Since rœ is equal to rœ=`r2

0+2r0rŒ cos f+r −2, the integral form
of the transient temperature that corresponds to the detected area becomes
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where T(r=rœ, t) is the temperature from Eq. (7) or Eq. (14). Since there
is no analytical solution of Eq. (15), one must perform one of the methods
of numerical integration. In this paper, the solution of temperature was
approximated by using the Newton–Cotes formulas over a limited number
of the temperature points within the detected region (12 distributed sym-
metrically, plus one at the center, as shown in Fig. 2b). Taking into
account that only 4 of the 8 temperatures of the symmetrical points from
the left and right sides of axis r are different, the following approximate
formula of Eq. (15) was applied:
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Having thus the final form of the transient temperature (Eq. (16)), one
can perform a parameter estimation procedure, which includes the study of
the parameter estimation possibilities.

3. PARAMETER ESTIMATION

3.1. Estimation Procedure

There are several parameter estimation procedures, but the most
frequently used are of the gradient type. Generally, all of them are based
on minimization of differences between experimental data and calculated
theoretical values. Among methods of the gradient type, the Gauss iterative
procedure is usually used in nonlinear estimation, i.e., when sensitivity
coefficients depend on proper parameters. A detailed description of this
procedure is given by Beck and Arnold [23]. Milošević et al. [24]
proposed it for estimation of the thermal contact resistance of a double-
layer sample, in the case of 1D heat conduction, including the influence of
‘‘known’’ parameter uncertainties. In this paper, the same estimation pro-
cedure is applied, as well as the principle of estimation possibility analysis.

3.2. Estimation Possibilities

Some parameters are more suitable for estimation, some less. In that
sense there are certain criteria that must be satisfied in order to obtain
reliable results for a given estimator. These criteria are based on the anal-
ysis of the reduced forms of sensitivity coefficients [23],

Xg
j =pj

“T
“pj

, (17)

where pj is the jth parameter of the model and T is the model response.
They are compared in order to find such a set of parameters whose sensi-
tivity coefficients show both an acceptable level of linear independence and
also absolute comparability.

There is also one condition for good estimation possibilities. In prac-
tice, there is always some finite uncertainty of ‘‘known’’ parameter values,
which can considerably influence the final results of estimations. Besides
the uncertainty of experimental data, s, the variance-covariance matrix
should, therefore, also be composed of the variances of ‘‘known’’ param-
eters, giving thus the total variance of the temperature response as [24]

s2
tot=s2+C

k

1spk

“T
“pk

22
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Table I. Values of Parameters a priori for the Estimation Analysis in Two Examples

Example 1 Example 2

Parameter
Al (substrate), Ni (thin film) Steel (substrate), PTFE (coating)

for estimation Value a priori Value a priori

a2 + × 106 (m2 · s−1) 23 0.29
a2|| × 106 (m2 · s−1) 23 0.29

Rc × 106 (m2 · K · W−1) 0.5 50
r2 (kg · m−3) 8900 2100

c2 (J · kg−1 · K−1) 444 1100
h1=h2=h (W · m−2 · K−1) 50 50

Q (J · m−2) 1000 1000

where pk is the kth ‘‘known’’ parameter. These variances increase the
general uncertainty of an estimation procedure and estimates, whose
reduced sensitivity coefficients are less than the level of the total standard
deviation from Eq. (18), and have a small influence on the temperature
response, making their accurate estimation difficult.

Estimation possibilities of the thermal diffusivity, density, and specific
heat5 of a thin film or coating, the thermal contact resistance, as well as

5 Having the same position in the model’s equations, parameters r1 and c1, and r2 and c2 are
treated integrally as two single parameters: r1c1 and r2c2.

those of the absorbed energy Q, and heat transfer coefficient h, will be
considered in two examples, one with a thin film, the other with a coating.
The values of all parameters as well as maximum uncertainties of ‘‘known’’
parameters used in this study are presented in Tables I and II.

Example 1. Let the sample consist of aluminum as a substrate and of
nickel as a thin film. Both of these materials are good heat conductors,
especially aluminum. The transient temperatures of the nickel surface,
computed using Eqs. (16), with parameter values from Tables I and II, and
for different distances from the sample center, are presented in Fig. 3 on a
logarithmic time scale. One can distinguish very fast responses in the region
that corresponds to laser pulse impact from back sample side (0 < r [ df),
as well as slower responses outside this region (r > df). This is expected
because the heat flux is initially much higher in the axial than in the radial
direction. Also, the temperature amplitude decreases as the distance r
becomes larger. An interesting result is about the time at which the tem-
perature maximum is reached. Namely, in the laser pulse region, it decreases
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Table II. Values and Uncertainties of ‘‘Known’’ Parameters for Two Examples

Example 1 Example 2
Al (substrate), Ni (thin film) Steel (substrate), PTFE (coating)

‘‘Known’’ Maximum Maximum
parameter Value uncertainty (%) Value uncertainty (%)

r (mm) 0,3,5,6,7,8 0.1 ÷ 100a 0,3,5,6,7,8 0.1 ÷ 100a

rs (mm) 1 10 1 10
a (mm) 0.2 1 1.55 0.1
b (mm) 5 10 100 0.5
d (mm) 25 0.04 25 0.04
df (mm) 5 0.04 5 0.04

y (ms) 0.1 10 0.1 10
a1 × 106 (cm2 · s−1) 97.1 2 4 2

r1 (kg · m−3) 2710 0.1 7820 0.1
c1 (J · kg−1 · K−1) 902 2 460 2

a From r=8 mm to r=0 mm where the minimal difference in distance is Dr=5 mm.
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Fig. 3. Temperature responses of the back sample side at different distances r from
Example 1.
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first, but very soon it begins to increase with the distance r, as it does
outside the region. The shift of the time of the temperature maximum is a
consequence of radial heat flow that affects responses of the rear sample
side gradually.

On the same figure one can note the influence of the finite area of
radius rs from which the temperature was actually measured. Namely,
as a consequence of the extended detector view and vicinity of the
sample central region, the transient response at r=6 mm begins to rise
very soon, although its ‘‘real’’ characteristic response (implying rs=0) is
much larger.

The reduced sensitivity coefficients of parameters for estimation at
several points r are shown in Fig. 4, also on a logarithmic time scale. One
can see different levels of influence and consequently different estimation
possibilities. While the parameter Q plays a significant role in the tempera-
ture response, the normal thin film thermal diffusivity a2 + has practically
no influence on the transient temperature in this case; influences of the
other parameters on the temperature response are different and between
these two extremes.

Besides the absolute parameter values, the measuring point r is also
very important for estimation possibilities. As r increases, sensitivity coef-
ficients of thermal diffusivities and contact resistance change not only their
values, but also their sign (cf. Fig. 4). Having both positive and negative
influences on the temperature response, these parameters are principally
good for estimation.

Comparing the sensitivity coefficients of parameters for estimation
with the total standard deviation stot computed from Eq. (18), one con-
siders, however, the real estimation possibilities of parameters for estima-
tion. Such a case is presented in Fig. 5. Several points should be noted:
(i) there is no chance to estimate parameters such as a2 + and Rc, because
their influence is much less than the level of stot; (ii) in a certain time
region, the parallel thermal diffusivity is ‘‘visible’’ for estimation; in
another region, it is not; (iii) influences of the other three parameters h,
r2c2, and Q are not affected significantly by stot, so their estimation could
be accurate and fast; and (iv) the overall uncertainty stot varies with the
distance r, meaning that the computation of the sensitivity coefficient for
every parameter and estimation step is indispensable.

Turning to Fig. 4 again, one can observe that having the sensitivity
coefficients almost linearly dependent, simultaneous estimation of r2c2, and
Q may not be accurate, in spite of the high absolute values of their reduced
sensitivity coefficients. In such case, one can use an estimation procedure
with the optimal set of parameters formed as a logarithmic combination of
original ones [25].
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Fig. 4. Reduced sensitivity coefficients of parameters for estimation from Example 1.
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Fig. 5. Reduced sensitivity coefficients of parameters for estimation and total response
uncertainty from Example 1.
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Example 2. In this example, the first layer (substrate) is made from a
steel (Cr-Ni), and the second (coating) from carbon fiber filled PTFE.6 The

6 Polytetrafluoroethylene.

first material is an average heat conductor, while the second one is a poor
conductor. Such a combination is found in practice in the case of a PTFE-
coated frying pan.

Characteristic responses and the influence of parameters for estimation
are very different than those from the first example. Reduced sensitivity
coefficients are presented in Fig. 6. The normal thermal diffusivity of
the coating is more significant than the parallel one, and its influence on
the response is always positive. The sensitivity coefficient of the thermal
contact resistance is mostly negative and with large values, thus making the
estimation of this parameter possible. However, the partial linear depen-
dence between a2 + , r2c2, and Rc makes, in general, their simultaneous
estimation more difficult. As far as the common heat transfer coefficient h
is concerned, its influence is generally weaker than in the first case, but the
form is the same as before. Similar results are obtained for the parallel
thermal diffusivity of the coating.

For a complete analysis of estimation possibilities, the computation
of the total response uncertainty is necessary. Having the uncertainties of
‘‘known’’ parameters from Table II, comparisons between reduced sensiti-
vity coefficients and total standard deviation stot for different measuring
points r are given in Fig. 7. One can observe an attenuation of both the
total uncertainty and also reduced sensitivity coefficients as r increases.
Nevertheless, the latter always stays higher than the total uncertainty, at
least in some time region, except for the sensitivity coefficient of the paral-
lel thermal diffusivity of the coating, whose values are approximately the
same as stot. The highest estimation possibility for this parameter is in the
region of temperature response where the value of its sensitivity coefficient
traverses the overall uncertainty range.

As in the previous example, there is a high level of linear dependence
between some parameters, in this case, between the normal thermal diffu-
sivity of the coating and the thermal contact resistance. These parameters
could be estimated simultaneously by either reducing the overall uncer-
tainty in the region where the sensitivity coefficient of Rc changes sign or
using the general optimal estimation procedure applied in Ref. 24.

If transport properties of the material of the coating are isotropic, the
problem reduces to the single thermal diffusivity, a2. Then, with the same
parametric values as above, its influence on the temperature response is
slightly different than that of the normal thermal diffusivity a2 + (cf. Fig. 7),
and mostly larger than the overall response uncertainty.
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Fig. 6. Reduced sensitivity coefficients of parameters for estimation from Example 2.

Thermal Diffusivity/Contact Resistance of Thin Films and Coatings 813



Fig. 7. Reduced sensitivity coefficients of parameters for estimation and total response
uncertainty from Example 2.
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4. EXPERIMENTAL SETUP AND MEASUREMENT RESULTS

The measurement principle of the present two-dimensional laser flash
method is equivalent to that proposed by Shibata et al. [6]. The experi-
mental objective is to measure the transient temperature at an arbitrary
point of the rear sample surface away from the center where external
heating on the front sample surface takes place. There are two possible
ways to accomplish this: to shift the pulse radiation along the front speci-
men side or to move the detection setup over its rear side. Here, the second
solution was more convenient. The experimental setup used in this work is
shown schematically in Fig. 8.

The sample is held in specially designed PTFE holders within an alu-
minum support. In front of the specimen a non-moving mask is fixed,
which limits the laser radiation to the central area of the sample surface.
At the other side, a moving mask defines the focalizing area for tempera-
ture detection. Displacement of the mask is measured with a micrometer
mounted on the sample support.

Fig. 8. Experimental setup.
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The focalizing unit consists of two convex CaF lens and an IR detector
holder fixed to the moving mask, directing the detector on the focalizing
area. The measurement of the transient temperature is accomplished with a
very sensitive InSb photoconductive detector. Its signal is amplified with a
built-in amplifier, which reduces efficiently most of the noise level. A ruby
pulse laser has an output energy up to 30 J, a pulse diameter of about 15 mm,
and a pulse duration of about 1 ms.

As a demonstration, measurements and the estimation procedure were
carried out on the sample from the second example with different values
for each parameter a priori, and with values and uncertainties of ‘‘known’’
parameters rs, a, b, d, and c1, taken from Table II. The coating specific heat
and density, c2 and r2, were considered as ‘‘known,’’ 7 and their values were

7 In the case of a very thin film, r2 and c2 should be considered unknown. However, in order
to achieve a better accuracy of estimation results, these parameters were taken as ‘‘known,’’
i.e., in practice, previously measured by some other experimental method.

taken from Table I (second example) with maximum uncertainties of 10
and 2%, respectively. The values of the substrate thermal diffusivity and
density, a1 and r1, were obtained separately using a uniform, monolayer
sample, made only from the substrate material. The thermal diffusivity of the
substrate was measured by the ordinary laser flash method, using the Gauss
estimation procedure [26], and the value was a1=12.5 × 10−6 m2 · s−1,
while the density is determined statistically as r1=7700 kg · m−3, using dif-
ferent specimens from the same material. The pulse duration was y=1 ms,
absorbed energy Q=100 J · m−2. while the radius of pulse heating was
df=2.5 mm, instead of 5 mm. The latter parameter influences significantly
the characteristic time of the temperature response, considering the dis-
tance r, but the shapes of response stay the same as shown in the previous
section. The transient temperature was measured at distances 0, 1, 2, 3, and
4 mm from the sample center.

Some experimental data in voltage units proportional to temperature
are presented in Fig. 9. Linearity of the IR detector over a small tempera-
ture range is implied. A very high signal-to-noise ratio was due to good
emissivity of the carbon fiber filled PTFE surface.

Estimation results, obtained by averaging intermediate results derived
from the individual set of a priori values, are given in Table III. According
to these results, there is some level of coating anisotropy where the parallel
thermal diffusivity is slightly below the normal value, but this distinction
could be covered by their estimation uncertainties. Calculated standard
deviations [24] for particular measurements were about 10% for the
normal and 33% for the parallel thermal diffusivity, which was expected
considering the weaker influence of the latter parameter on the response.
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Fig. 9. Experimental data for the steel-PTFE sample.

The standard deviations for the thermal contact resistance, for a given dis-
tance r, are quite low. Relatively high general scatter of the results is due
to a certain level of linear dependence between the sensitivity coefficients of
parameters a2 + and Rc (cf. Fig. 6).

If the sample is considered homogeneous in the parallel direction, the
values for each parameter can be averaged. If not, however, the different
uncertainties of ‘‘known’’ parameters across the sample should be taken
into account.

5. SUMMARY

An exact two-dimensional analytical solution of the transient tempera-
ture of a thin film or coating deposited on a substrate, including anisotropy,

Table III. Values of Estimated Parameters and Their Standard Deviations

r a2 + × 106 sa2 + a2|| × 106 sa2|| Rc × 106 sRc

(mm) (m2 · s−1) (%) (m2 · s−1) (%) (m2 · K · W−1) (%)

0 0.214 9.4 0.180 33.7 342 3.5
1 0.250 8.7 0.182 33.1 346 3.2
2 0.191 8.3 0.183 33.0 397 3.2
3 0.265 13.9 0.186 33.9 539 2.5
4 0.261 10.8 0.189 34.0 402 3.0
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the thermal contact resistance, and heat exchange coefficients has been
made available [20]. Such a solution, extended for the finite duration of
pulse heating and the finite area of the temperature detection, has been
used in two examples in the study of estimation possibilities of a thin film
or coating thermal diffusivity, of the thermal contact resistance between
layers, as well as those of some other typically unknown parameters. In
summary:

– The coating thermal diffusivity, perpendicular to the sample plane,
is more suitable for estimation than that of a thin film.

– The thin film thermal diffusivity, parallel to the sample plane, could
be estimated simultaneously with the thermal contact resistance.

– Going from inside to outside the heating pulse region, sensitivity
coefficients of both thermal diffusivities and thermal contact resis-
tance change their forms, thus increasing the estimation possibilities.

– Uncertainties of ‘‘known’’ parameters influence the total variance of
the response, thus increasing the final uncertainties of estimated
parameters.

Generally, having transient temperature responses at different points r
away from the sample center, offers better possibilities for more accurate
and reliable estimations than data obtained by the standard flash method,
especially when the anisotropy of material is concerned. Therefore, the two-
dimensional laser flash method can be, under certain conditions, extended
to thermophysical property characterization of deposited thin films or
coatings using the parameter estimation procedure.

ACKNOWLEDGMENTS

This work is maintained by the French Ministry of Foreign Affairs
and Yugoslav Ministry of Science and Technology. The authors wish to
thank Dr. Jean-Marie Letoffe from CNRS, Lyon for technical support in
the experimental work.

REFERENCES

1. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32:1679 (1961).
2. A. B. Donaldson and R. E. Taylor, J. Appl. Phys. 46:4584 (1975).
3. F. I. Chu, R. E. Taylor, and A. B. Donaldson, J. Appl. Phys. 51:336 (1980).
4. M. Amazouz, C. Moyne, and A. Degiovanni, High Temp.–High Press. 19:37 (1987).
5. M. Lachi and A. Degiovanni, J. Phys. III France 1:2027 (1991).
6. H. Shibata, H. Ohta, and Y. Waseda, Mater. Trans. JIM 32:837 (1991).
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No. 68 (Poitiers, France, 2001), pp. 311–318.
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(1999).

Thermal Diffusivity/Contact Resistance of Thin Films and Coatings 819


	
	
	
	
	
	

